判断两棵二叉树是否等价:若两棵二叉树可以通过任意次的交换任意节点的左右子树变为相同,则称两棵二叉树等价。
思路:遍历二叉树,判断所有的子树是否等价。
struct TreeNode{ int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {}};class Solution{public: void exchangeSons(TreeNode* root) { TreeNode* tmp = root->left; root->left = root->right; root->right = tmp; } int getNum(TreeNode* node) { if(node == NULL) return -1; else return node->val; } int compareSons(TreeNode* root1, TreeNode* root2) { TreeNode* left1 = root1->left; TreeNode* right1 = root1->right; TreeNode* left2 = root2->left; TreeNode* right2 = root2->right; int l1,l2,r1,r2; l1 = getNum(left1); l2 = getNum(left2); r1 = getNum(right1); r2 = getNum(right2); if(l1 == l2 && r1 == r2) return 1; else if(l1 == r2 && r1 == l2) return 2; else return 0; } bool flipEquiv(TreeNode* root1, TreeNode* root2) { if(root1 == NULL && root2 == NULL) return 1; else if(root1 == NULL) return 0; else if(root2 == NULL) return 0; int comres = compareSons(root1, root2); if(comres == 0) return 0; else if(comres == 2) exchangeSons(root2); bool leftEquiv = 1,rightEquiv = 1; if(root1->left != NULL) leftEquiv = flipEquiv(root1->left, root2->left); if(root1->right != NULL) rightEquiv = flipEquiv(root1->right, root2->right); if(leftEquiv&&rightEquiv) return 1; else return 0; }};
For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.
A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.
Write a function that determines whether two binary trees are flip equivalent. The trees are given by root nodes root1
and root2
.
Example 1:
Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]Output: trueExplanation: We flipped at nodes with values 1, 3, and 5.
Note:
- Each tree will have at most
100
nodes. - Each value in each tree will be a unique integer in the range
[0, 99]
.